3.2.15 \(\int \frac {A+B \tan (e+f x)+C \tan ^2(e+f x)}{(a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)}} \, dx\) [115]

3.2.15.1 Optimal result
3.2.15.2 Mathematica [A] (verified)
3.2.15.3 Rubi [A] (warning: unable to verify)
3.2.15.4 Maple [B] (verified)
3.2.15.5 Fricas [F(-1)]
3.2.15.6 Sympy [F]
3.2.15.7 Maxima [F(-2)]
3.2.15.8 Giac [F(-1)]
3.2.15.9 Mupad [B] (verification not implemented)

3.2.15.1 Optimal result

Integrand size = 47, antiderivative size = 327 \[ \int \frac {A+B \tan (e+f x)+C \tan ^2(e+f x)}{(a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)}} \, dx=-\frac {(i A+B-i C) \text {arctanh}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d}}\right )}{(a-i b)^2 \sqrt {c-i d} f}-\frac {(B-i (A-C)) \text {arctanh}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c+i d}}\right )}{(a+i b)^2 \sqrt {c+i d} f}-\frac {\left (3 a^3 b B d-a^4 C d+b^4 (2 B c-A d)+a b^3 (4 A c-4 c C-B d)-a^2 b^2 (2 B c+5 A d-3 C d)\right ) \text {arctanh}\left (\frac {\sqrt {b} \sqrt {c+d \tan (e+f x)}}{\sqrt {b c-a d}}\right )}{\sqrt {b} \left (a^2+b^2\right )^2 (b c-a d)^{3/2} f}-\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{\left (a^2+b^2\right ) (b c-a d) f (a+b \tan (e+f x))} \]

output
-(3*a^3*b*B*d-a^4*C*d+b^4*(-A*d+2*B*c)+a*b^3*(4*A*c-B*d-4*C*c)-a^2*b^2*(5* 
A*d+2*B*c-3*C*d))*arctanh(b^(1/2)*(c+d*tan(f*x+e))^(1/2)/(-a*d+b*c)^(1/2)) 
/(a^2+b^2)^2/(-a*d+b*c)^(3/2)/f/b^(1/2)-(I*A+B-I*C)*arctanh((c+d*tan(f*x+e 
))^(1/2)/(c-I*d)^(1/2))/(a-I*b)^2/f/(c-I*d)^(1/2)-(B-I*(A-C))*arctanh((c+d 
*tan(f*x+e))^(1/2)/(c+I*d)^(1/2))/(a+I*b)^2/f/(c+I*d)^(1/2)-(A*b^2-a*(B*b- 
C*a))*(c+d*tan(f*x+e))^(1/2)/(a^2+b^2)/(-a*d+b*c)/f/(a+b*tan(f*x+e))
 
3.2.15.2 Mathematica [A] (verified)

Time = 6.26 (sec) , antiderivative size = 521, normalized size of antiderivative = 1.59 \[ \int \frac {A+B \tan (e+f x)+C \tan ^2(e+f x)}{(a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)}} \, dx=-\frac {\frac {\frac {i \sqrt {c-i d} \left (i \left (a^2 B-b^2 B-2 a b (A-C)\right ) (b c-a d)-\left (2 a b B+a^2 (A-C)-b^2 (A-C)\right ) (b c-a d)\right ) \text {arctanh}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d}}\right )}{(-c+i d) f}-\frac {i \sqrt {c+i d} \left (-i \left (a^2 B-b^2 B-2 a b (A-C)\right ) (b c-a d)-\left (2 a b B+a^2 (A-C)-b^2 (A-C)\right ) (b c-a d)\right ) \text {arctanh}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c+i d}}\right )}{(-c-i d) f}}{a^2+b^2}+\frac {2 \sqrt {b c-a d} \left (\frac {1}{2} a^2 \left (A b^2-a (b B-a C)\right ) d-a b (A b-a B-b C) (b c-a d)+\frac {1}{2} b^2 \left (A b^2 d-2 a A (b c-a d)-2 (b B-a C) \left (b c-\frac {a d}{2}\right )\right )\right ) \text {arctanh}\left (\frac {\sqrt {b} \sqrt {c+d \tan (e+f x)}}{\sqrt {b c-a d}}\right )}{\sqrt {b} \left (a^2+b^2\right ) (-b c+a d) f}}{\left (a^2+b^2\right ) (b c-a d)}-\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{\left (a^2+b^2\right ) (b c-a d) f (a+b \tan (e+f x))} \]

input
Integrate[(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2)/((a + b*Tan[e + f*x])^2* 
Sqrt[c + d*Tan[e + f*x]]),x]
 
output
-((((I*Sqrt[c - I*d]*(I*(a^2*B - b^2*B - 2*a*b*(A - C))*(b*c - a*d) - (2*a 
*b*B + a^2*(A - C) - b^2*(A - C))*(b*c - a*d))*ArcTanh[Sqrt[c + d*Tan[e + 
f*x]]/Sqrt[c - I*d]])/((-c + I*d)*f) - (I*Sqrt[c + I*d]*((-I)*(a^2*B - b^2 
*B - 2*a*b*(A - C))*(b*c - a*d) - (2*a*b*B + a^2*(A - C) - b^2*(A - C))*(b 
*c - a*d))*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c + I*d]])/((-c - I*d)*f) 
)/(a^2 + b^2) + (2*Sqrt[b*c - a*d]*((a^2*(A*b^2 - a*(b*B - a*C))*d)/2 - a* 
b*(A*b - a*B - b*C)*(b*c - a*d) + (b^2*(A*b^2*d - 2*a*A*(b*c - a*d) - 2*(b 
*B - a*C)*(b*c - (a*d)/2)))/2)*ArcTanh[(Sqrt[b]*Sqrt[c + d*Tan[e + f*x]])/ 
Sqrt[b*c - a*d]])/(Sqrt[b]*(a^2 + b^2)*(-(b*c) + a*d)*f))/((a^2 + b^2)*(b* 
c - a*d))) - ((A*b^2 - a*(b*B - a*C))*Sqrt[c + d*Tan[e + f*x]])/((a^2 + b^ 
2)*(b*c - a*d)*f*(a + b*Tan[e + f*x]))
 
3.2.15.3 Rubi [A] (warning: unable to verify)

Time = 2.25 (sec) , antiderivative size = 358, normalized size of antiderivative = 1.09, number of steps used = 17, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.340, Rules used = {3042, 4132, 27, 3042, 4136, 27, 3042, 4022, 3042, 4020, 25, 73, 221, 4117, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \tan (e+f x)+C \tan ^2(e+f x)}{(a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \tan (e+f x)+C \tan (e+f x)^2}{(a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)}}dx\)

\(\Big \downarrow \) 4132

\(\displaystyle -\frac {\int \frac {(2 A-C) d a^2-b (2 A c-2 C c-B d) a+\left (A b^2-a (b B-a C)\right ) d \tan ^2(e+f x)-b^2 (2 B c-A d)+2 (A b-C b-a B) (b c-a d) \tan (e+f x)}{2 (a+b \tan (e+f x)) \sqrt {c+d \tan (e+f x)}}dx}{\left (a^2+b^2\right ) (b c-a d)}-\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) (b c-a d) (a+b \tan (e+f x))}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {(2 A-C) d a^2-b (2 A c-2 C c-B d) a+\left (A b^2-a (b B-a C)\right ) d \tan ^2(e+f x)-b^2 (2 B c-A d)+2 (A b-C b-a B) (b c-a d) \tan (e+f x)}{(a+b \tan (e+f x)) \sqrt {c+d \tan (e+f x)}}dx}{2 \left (a^2+b^2\right ) (b c-a d)}-\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) (b c-a d) (a+b \tan (e+f x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {(2 A-C) d a^2-b (2 A c-2 C c-B d) a+\left (A b^2-a (b B-a C)\right ) d \tan (e+f x)^2-b^2 (2 B c-A d)+2 (A b-C b-a B) (b c-a d) \tan (e+f x)}{(a+b \tan (e+f x)) \sqrt {c+d \tan (e+f x)}}dx}{2 \left (a^2+b^2\right ) (b c-a d)}-\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) (b c-a d) (a+b \tan (e+f x))}\)

\(\Big \downarrow \) 4136

\(\displaystyle -\frac {\frac {\int -\frac {2 \left (\left ((A-C) a^2+2 b B a-b^2 (A-C)\right ) (b c-a d)+\left (B a^2-2 b (A-C) a-b^2 B\right ) \tan (e+f x) (b c-a d)\right )}{\sqrt {c+d \tan (e+f x)}}dx}{a^2+b^2}-\frac {\left (a^4 (-C) d+3 a^3 b B d-a^2 b^2 (5 A d+2 B c-3 C d)+a b^3 (4 A c-B d-4 c C)+b^4 (2 B c-A d)\right ) \int \frac {\tan ^2(e+f x)+1}{(a+b \tan (e+f x)) \sqrt {c+d \tan (e+f x)}}dx}{a^2+b^2}}{2 \left (a^2+b^2\right ) (b c-a d)}-\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) (b c-a d) (a+b \tan (e+f x))}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {-\frac {2 \int \frac {\left ((A-C) a^2+2 b B a-b^2 (A-C)\right ) (b c-a d)+\left (B a^2-2 b (A-C) a-b^2 B\right ) \tan (e+f x) (b c-a d)}{\sqrt {c+d \tan (e+f x)}}dx}{a^2+b^2}-\frac {\left (a^4 (-C) d+3 a^3 b B d-a^2 b^2 (5 A d+2 B c-3 C d)+a b^3 (4 A c-B d-4 c C)+b^4 (2 B c-A d)\right ) \int \frac {\tan ^2(e+f x)+1}{(a+b \tan (e+f x)) \sqrt {c+d \tan (e+f x)}}dx}{a^2+b^2}}{2 \left (a^2+b^2\right ) (b c-a d)}-\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) (b c-a d) (a+b \tan (e+f x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {-\frac {2 \int \frac {\left ((A-C) a^2+2 b B a-b^2 (A-C)\right ) (b c-a d)+\left (B a^2-2 b (A-C) a-b^2 B\right ) \tan (e+f x) (b c-a d)}{\sqrt {c+d \tan (e+f x)}}dx}{a^2+b^2}-\frac {\left (a^4 (-C) d+3 a^3 b B d-a^2 b^2 (5 A d+2 B c-3 C d)+a b^3 (4 A c-B d-4 c C)+b^4 (2 B c-A d)\right ) \int \frac {\tan (e+f x)^2+1}{(a+b \tan (e+f x)) \sqrt {c+d \tan (e+f x)}}dx}{a^2+b^2}}{2 \left (a^2+b^2\right ) (b c-a d)}-\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) (b c-a d) (a+b \tan (e+f x))}\)

\(\Big \downarrow \) 4022

\(\displaystyle -\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) (b c-a d) (a+b \tan (e+f x))}-\frac {-\frac {\left (a^4 (-C) d+3 a^3 b B d-a^2 b^2 (5 A d+2 B c-3 C d)+a b^3 (4 A c-B d-4 c C)+b^4 (2 B c-A d)\right ) \int \frac {\tan (e+f x)^2+1}{(a+b \tan (e+f x)) \sqrt {c+d \tan (e+f x)}}dx}{a^2+b^2}-\frac {2 \left (\frac {1}{2} (a-i b)^2 (A+i B-C) (b c-a d) \int \frac {1-i \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}}dx+\frac {1}{2} (a+i b)^2 (A-i B-C) (b c-a d) \int \frac {i \tan (e+f x)+1}{\sqrt {c+d \tan (e+f x)}}dx\right )}{a^2+b^2}}{2 \left (a^2+b^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) (b c-a d) (a+b \tan (e+f x))}-\frac {-\frac {\left (a^4 (-C) d+3 a^3 b B d-a^2 b^2 (5 A d+2 B c-3 C d)+a b^3 (4 A c-B d-4 c C)+b^4 (2 B c-A d)\right ) \int \frac {\tan (e+f x)^2+1}{(a+b \tan (e+f x)) \sqrt {c+d \tan (e+f x)}}dx}{a^2+b^2}-\frac {2 \left (\frac {1}{2} (a-i b)^2 (A+i B-C) (b c-a d) \int \frac {1-i \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}}dx+\frac {1}{2} (a+i b)^2 (A-i B-C) (b c-a d) \int \frac {i \tan (e+f x)+1}{\sqrt {c+d \tan (e+f x)}}dx\right )}{a^2+b^2}}{2 \left (a^2+b^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 4020

\(\displaystyle -\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) (b c-a d) (a+b \tan (e+f x))}-\frac {-\frac {\left (a^4 (-C) d+3 a^3 b B d-a^2 b^2 (5 A d+2 B c-3 C d)+a b^3 (4 A c-B d-4 c C)+b^4 (2 B c-A d)\right ) \int \frac {\tan (e+f x)^2+1}{(a+b \tan (e+f x)) \sqrt {c+d \tan (e+f x)}}dx}{a^2+b^2}-\frac {2 \left (\frac {i (a+i b)^2 (A-i B-C) (b c-a d) \int -\frac {1}{(1-i \tan (e+f x)) \sqrt {c+d \tan (e+f x)}}d(i \tan (e+f x))}{2 f}-\frac {i (a-i b)^2 (A+i B-C) (b c-a d) \int -\frac {1}{(i \tan (e+f x)+1) \sqrt {c+d \tan (e+f x)}}d(-i \tan (e+f x))}{2 f}\right )}{a^2+b^2}}{2 \left (a^2+b^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) (b c-a d) (a+b \tan (e+f x))}-\frac {-\frac {\left (a^4 (-C) d+3 a^3 b B d-a^2 b^2 (5 A d+2 B c-3 C d)+a b^3 (4 A c-B d-4 c C)+b^4 (2 B c-A d)\right ) \int \frac {\tan (e+f x)^2+1}{(a+b \tan (e+f x)) \sqrt {c+d \tan (e+f x)}}dx}{a^2+b^2}-\frac {2 \left (\frac {i (a-i b)^2 (A+i B-C) (b c-a d) \int \frac {1}{(i \tan (e+f x)+1) \sqrt {c+d \tan (e+f x)}}d(-i \tan (e+f x))}{2 f}-\frac {i (a+i b)^2 (A-i B-C) (b c-a d) \int \frac {1}{(1-i \tan (e+f x)) \sqrt {c+d \tan (e+f x)}}d(i \tan (e+f x))}{2 f}\right )}{a^2+b^2}}{2 \left (a^2+b^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) (b c-a d) (a+b \tan (e+f x))}-\frac {-\frac {\left (a^4 (-C) d+3 a^3 b B d-a^2 b^2 (5 A d+2 B c-3 C d)+a b^3 (4 A c-B d-4 c C)+b^4 (2 B c-A d)\right ) \int \frac {\tan (e+f x)^2+1}{(a+b \tan (e+f x)) \sqrt {c+d \tan (e+f x)}}dx}{a^2+b^2}-\frac {2 \left (\frac {(a-i b)^2 (A+i B-C) (b c-a d) \int \frac {1}{-\frac {i \tan ^2(e+f x)}{d}-\frac {i c}{d}+1}d\sqrt {c+d \tan (e+f x)}}{d f}+\frac {(a+i b)^2 (A-i B-C) (b c-a d) \int \frac {1}{\frac {i \tan ^2(e+f x)}{d}+\frac {i c}{d}+1}d\sqrt {c+d \tan (e+f x)}}{d f}\right )}{a^2+b^2}}{2 \left (a^2+b^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) (b c-a d) (a+b \tan (e+f x))}-\frac {-\frac {\left (a^4 (-C) d+3 a^3 b B d-a^2 b^2 (5 A d+2 B c-3 C d)+a b^3 (4 A c-B d-4 c C)+b^4 (2 B c-A d)\right ) \int \frac {\tan (e+f x)^2+1}{(a+b \tan (e+f x)) \sqrt {c+d \tan (e+f x)}}dx}{a^2+b^2}-\frac {2 \left (\frac {(a-i b)^2 (A+i B-C) (b c-a d) \arctan \left (\frac {\tan (e+f x)}{\sqrt {c+i d}}\right )}{f \sqrt {c+i d}}+\frac {(a+i b)^2 (A-i B-C) (b c-a d) \arctan \left (\frac {\tan (e+f x)}{\sqrt {c-i d}}\right )}{f \sqrt {c-i d}}\right )}{a^2+b^2}}{2 \left (a^2+b^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 4117

\(\displaystyle -\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) (b c-a d) (a+b \tan (e+f x))}-\frac {-\frac {\left (a^4 (-C) d+3 a^3 b B d-a^2 b^2 (5 A d+2 B c-3 C d)+a b^3 (4 A c-B d-4 c C)+b^4 (2 B c-A d)\right ) \int \frac {1}{(a+b \tan (e+f x)) \sqrt {c+d \tan (e+f x)}}d\tan (e+f x)}{f \left (a^2+b^2\right )}-\frac {2 \left (\frac {(a-i b)^2 (A+i B-C) (b c-a d) \arctan \left (\frac {\tan (e+f x)}{\sqrt {c+i d}}\right )}{f \sqrt {c+i d}}+\frac {(a+i b)^2 (A-i B-C) (b c-a d) \arctan \left (\frac {\tan (e+f x)}{\sqrt {c-i d}}\right )}{f \sqrt {c-i d}}\right )}{a^2+b^2}}{2 \left (a^2+b^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) (b c-a d) (a+b \tan (e+f x))}-\frac {-\frac {2 \left (a^4 (-C) d+3 a^3 b B d-a^2 b^2 (5 A d+2 B c-3 C d)+a b^3 (4 A c-B d-4 c C)+b^4 (2 B c-A d)\right ) \int \frac {1}{a+\frac {b (c+d \tan (e+f x))}{d}-\frac {b c}{d}}d\sqrt {c+d \tan (e+f x)}}{d f \left (a^2+b^2\right )}-\frac {2 \left (\frac {(a-i b)^2 (A+i B-C) (b c-a d) \arctan \left (\frac {\tan (e+f x)}{\sqrt {c+i d}}\right )}{f \sqrt {c+i d}}+\frac {(a+i b)^2 (A-i B-C) (b c-a d) \arctan \left (\frac {\tan (e+f x)}{\sqrt {c-i d}}\right )}{f \sqrt {c-i d}}\right )}{a^2+b^2}}{2 \left (a^2+b^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) (b c-a d) (a+b \tan (e+f x))}-\frac {\frac {2 \left (a^4 (-C) d+3 a^3 b B d-a^2 b^2 (5 A d+2 B c-3 C d)+a b^3 (4 A c-B d-4 c C)+b^4 (2 B c-A d)\right ) \text {arctanh}\left (\frac {\sqrt {b} \sqrt {c+d \tan (e+f x)}}{\sqrt {b c-a d}}\right )}{\sqrt {b} f \left (a^2+b^2\right ) \sqrt {b c-a d}}-\frac {2 \left (\frac {(a-i b)^2 (A+i B-C) (b c-a d) \arctan \left (\frac {\tan (e+f x)}{\sqrt {c+i d}}\right )}{f \sqrt {c+i d}}+\frac {(a+i b)^2 (A-i B-C) (b c-a d) \arctan \left (\frac {\tan (e+f x)}{\sqrt {c-i d}}\right )}{f \sqrt {c-i d}}\right )}{a^2+b^2}}{2 \left (a^2+b^2\right ) (b c-a d)}\)

input
Int[(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2)/((a + b*Tan[e + f*x])^2*Sqrt[c 
 + d*Tan[e + f*x]]),x]
 
output
-1/2*((-2*(((a + I*b)^2*(A - I*B - C)*(b*c - a*d)*ArcTan[Tan[e + f*x]/Sqrt 
[c - I*d]])/(Sqrt[c - I*d]*f) + ((a - I*b)^2*(A + I*B - C)*(b*c - a*d)*Arc 
Tan[Tan[e + f*x]/Sqrt[c + I*d]])/(Sqrt[c + I*d]*f)))/(a^2 + b^2) + (2*(3*a 
^3*b*B*d - a^4*C*d + b^4*(2*B*c - A*d) + a*b^3*(4*A*c - 4*c*C - B*d) - a^2 
*b^2*(2*B*c + 5*A*d - 3*C*d))*ArcTanh[(Sqrt[b]*Sqrt[c + d*Tan[e + f*x]])/S 
qrt[b*c - a*d]])/(Sqrt[b]*(a^2 + b^2)*Sqrt[b*c - a*d]*f))/((a^2 + b^2)*(b* 
c - a*d)) - ((A*b^2 - a*(b*B - a*C))*Sqrt[c + d*Tan[e + f*x]])/((a^2 + b^2 
)*(b*c - a*d)*f*(a + b*Tan[e + f*x]))
 

3.2.15.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4020
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[c*(d/f)   Subst[Int[(a + (b/d)*x)^m/(d^2 + 
c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]
 

rule 4022
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(c + I*d)/2   Int[(a + b*Tan[e + f*x])^m*( 
1 - I*Tan[e + f*x]), x], x] + Simp[(c - I*d)/2   Int[(a + b*Tan[e + f*x])^m 
*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c 
 - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 

rule 4132
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Tan[e + 
 f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + 
b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 + b^2))   Int[(a + b*Tan[e + 
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d* 
(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d 
)*(A*b - a*B - b*C)*Tan[e + f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Ta 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ 
[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && 
!(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4136
Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) 
+ (f_.)*(x_)]), x_Symbol] :> Simp[1/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^ 
n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Simp[ 
(A*b^2 - a*b*B + a^2*C)/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^n*((1 + Tan[ 
e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, 
 C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] & 
&  !GtQ[n, 0] &&  !LeQ[n, -1]
 
3.2.15.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(20869\) vs. \(2(294)=588\).

Time = 0.16 (sec) , antiderivative size = 20870, normalized size of antiderivative = 63.82

method result size
derivativedivides \(\text {Expression too large to display}\) \(20870\)
default \(\text {Expression too large to display}\) \(20870\)

input
int((A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e) 
)^2,x,method=_RETURNVERBOSE)
 
output
result too large to display
 
3.2.15.5 Fricas [F(-1)]

Timed out. \[ \int \frac {A+B \tan (e+f x)+C \tan ^2(e+f x)}{(a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)}} \, dx=\text {Timed out} \]

input
integrate((A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2)/(a+b*tan( 
f*x+e))^2,x, algorithm="fricas")
 
output
Timed out
 
3.2.15.6 Sympy [F]

\[ \int \frac {A+B \tan (e+f x)+C \tan ^2(e+f x)}{(a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)}} \, dx=\int \frac {A + B \tan {\left (e + f x \right )} + C \tan ^{2}{\left (e + f x \right )}}{\left (a + b \tan {\left (e + f x \right )}\right )^{2} \sqrt {c + d \tan {\left (e + f x \right )}}}\, dx \]

input
integrate((A+B*tan(f*x+e)+C*tan(f*x+e)**2)/(c+d*tan(f*x+e))**(1/2)/(a+b*ta 
n(f*x+e))**2,x)
 
output
Integral((A + B*tan(e + f*x) + C*tan(e + f*x)**2)/((a + b*tan(e + f*x))**2 
*sqrt(c + d*tan(e + f*x))), x)
 
3.2.15.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {A+B \tan (e+f x)+C \tan ^2(e+f x)}{(a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)}} \, dx=\text {Exception raised: ValueError} \]

input
integrate((A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2)/(a+b*tan( 
f*x+e))^2,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for m 
ore detail
 
3.2.15.8 Giac [F(-1)]

Timed out. \[ \int \frac {A+B \tan (e+f x)+C \tan ^2(e+f x)}{(a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)}} \, dx=\text {Timed out} \]

input
integrate((A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2)/(a+b*tan( 
f*x+e))^2,x, algorithm="giac")
 
output
Timed out
 
3.2.15.9 Mupad [B] (verification not implemented)

Time = 57.47 (sec) , antiderivative size = 225004, normalized size of antiderivative = 688.09 \[ \int \frac {A+B \tan (e+f x)+C \tan ^2(e+f x)}{(a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)}} \, dx=\text {Too large to display} \]

input
int((A + B*tan(e + f*x) + C*tan(e + f*x)^2)/((a + b*tan(e + f*x))^2*(c + d 
*tan(e + f*x))^(1/2)),x)
 
output
(atan(((((((16*(8*C^3*a^6*b^7*d^11*f^2 - 78*C^3*a^4*b^9*d^11*f^2 + 60*C^3* 
a^8*b^5*d^11*f^2 - 24*C^3*a^10*b^3*d^11*f^2 + 2*C^3*a^12*b*d^11*f^2 - 32*C 
^3*a*b^12*c^3*d^8*f^2 + 152*C^3*a^3*b^10*c*d^10*f^2 + 128*C^3*a^5*b^8*c*d^ 
10*f^2 - 64*C^3*a^7*b^6*c*d^10*f^2 - 32*C^3*a^9*b^4*c*d^10*f^2 + 8*C^3*a^1 
1*b^2*c*d^10*f^2 - 40*C^3*a^2*b^11*c^2*d^9*f^2 + 64*C^3*a^3*b^10*c^3*d^8*f 
^2 - 216*C^3*a^4*b^9*c^2*d^9*f^2 + 96*C^3*a^5*b^8*c^3*d^8*f^2 - 120*C^3*a^ 
6*b^7*c^2*d^9*f^2 + 56*C^3*a^8*b^5*c^2*d^9*f^2))/(a^10*d^2*f^5 + b^10*c^2* 
f^5 + 4*a^2*b^8*c^2*f^5 + 6*a^4*b^6*c^2*f^5 + 4*a^6*b^4*c^2*f^5 + a^8*b^2* 
c^2*f^5 + a^2*b^8*d^2*f^5 + 4*a^4*b^6*d^2*f^5 + 6*a^6*b^4*d^2*f^5 + 4*a^8* 
b^2*d^2*f^5 - 2*a*b^9*c*d*f^5 - 2*a^9*b*c*d*f^5 - 8*a^3*b^7*c*d*f^5 - 12*a 
^5*b^5*c*d*f^5 - 8*a^7*b^3*c*d*f^5) - (((((16*(40*C*a^3*b^14*d^12*f^4 + 19 
2*C*a^5*b^12*d^12*f^4 + 360*C*a^7*b^10*d^12*f^4 + 320*C*a^9*b^8*d^12*f^4 + 
 120*C*a^11*b^6*d^12*f^4 - 8*C*a^15*b^2*d^12*f^4 + 8*C*b^17*c^3*d^9*f^4 + 
40*C*a*b^16*c^2*d^10*f^4 + 32*C*a*b^16*c^4*d^8*f^4 - 88*C*a^2*b^15*c*d^11* 
f^4 - 448*C*a^4*b^13*c*d^11*f^4 - 920*C*a^6*b^11*c*d^11*f^4 - 960*C*a^8*b^ 
9*c*d^11*f^4 - 520*C*a^10*b^7*c*d^11*f^4 - 128*C*a^12*b^5*c*d^11*f^4 - 8*C 
*a^14*b^3*c*d^11*f^4 - 32*C*a^2*b^15*c^3*d^9*f^4 + 256*C*a^3*b^14*c^2*d^10 
*f^4 + 160*C*a^3*b^14*c^4*d^8*f^4 - 280*C*a^4*b^13*c^3*d^9*f^4 + 680*C*a^5 
*b^12*c^2*d^10*f^4 + 320*C*a^5*b^12*c^4*d^8*f^4 - 640*C*a^6*b^11*c^3*d^9*f 
^4 + 960*C*a^7*b^10*c^2*d^10*f^4 + 320*C*a^7*b^10*c^4*d^8*f^4 - 680*C*a...